7 research outputs found

    Effect of reinforcement fibers on the collapse potential of clayey sands

    No full text
    The collapse of soils under wetting is a major problem in Geotechnical engineering. The erection of structures on these types of soils, located in arid and semi-arid zones, needs careful treatment of these soils. Soil reinforcement techniques have been rapidly increased during these two decades because of their effectiveness in geotechnical engineering. The aim of this experimental work is to investigate the collapsible soil behaviour in order to improve its characteristics. To achieve this goal, Polyethylene fibers, and Sisal fibers were used as Polyethylene fibers content in mass are varied from 0% (unreinforced samples) to 15%; and Sisal fibers content from 0.5% to 1%. The fiber reinforcement is combined with other processing procedures such as compaction and the addition of CPA cement to decrease the collapse potential

    Effect of reinforcement fibers on the collapse potential of clayey sands

    No full text
    The collapse of soils under wetting is a major problem in Geotechnical engineering. The erection of structures on these types of soils, located in arid and semi-arid zones, needs careful treatment of these soils. Soil reinforcement techniques have been rapidly increased during these two decades because of their effectiveness in geotechnical engineering. The aim of this experimental work is to investigate the collapsible soil behaviour in order to improve its characteristics. To achieve this goal, Polyethylene fibers, and Sisal fibers were used as Polyethylene fibers content in mass are varied from 0% (unreinforced samples) to 15%; and Sisal fibers content from 0.5% to 1%. The fiber reinforcement is combined with other processing procedures such as compaction and the addition of CPA cement to decrease the collapse potential

    Treatment of Collapsible Soils with Granulated Blast Furnace Slag and Calcined Eggshell Waste

    No full text
    In order to meet environmental and socio-economic challenges, the recycling of waste tobe used in the treatment of geotechnical problems is one of the main ways of preserving the environment with a lower economic value. The objective of this experimental work is to improve the characteristics and to study the mechanical behaviour of collapsible soil treated with a new hydraulic stabilizer composed of Crushed Granulated Blast Furnace Slag (CGBS) active by Eggshell Waste (CES). The specimens were mixed with stabilizer content, varying from 0 to 15% in mass, with an initial water content of 4, 6 and 8% respectively. in mass. Oedometer apparatus was used to study the addition of new hydraulic stabilizer effect on the Collapse Potential. Triaxial tests are also conducted to determine the shear strength parameters (cohesion and internal friction angle) of this treated soil. The results of this research study show that the mechanical properties of the treated collapsible soil were significantly improved. An appreciable reduction in the collapse potential is observed. The addition of 15% of this new stabilizer with initial water content of 4% under a compaction of 60 blows/ layer is capable of increasing internal friction angle and cohesion. It can be concluded from this study that the mixture of granulated slag and calcined eggshell can be used as an effective treatment of collapsibility phenomenon at low cost while protecting the environment from industrial waste

    Utilisation du critÚre de stabilité de Hill en milieu non saturé pour la modélisation des glissements de terrain de la région de Constantine

    Get PDF
    Les risques naturels restent, en grande partie, inexpliquĂ©s dans le cadre des mĂ©thodes classiques. De nouvelles approches sont nĂ©cessaires pour rendre compte de ce problĂšme. Ce prĂ©sent travail est basĂ© sur le critĂšre de Hill, en utilisant le logiciel de calcul par Ă©lĂ©ments finis Plaxis. L’application de cette approche a portĂ© sur la modĂ©lisation hydromĂ©canique couplĂ©e en milieux non saturĂ©s, d’un massif de terrain glissant du site Ciloc Ă  Constantine en AlgĂ©rie

    Tensile Force Distribution And Development Within Geogrid-Reinforced Retaining Wall

    No full text
    Geogrid-reinforced earth retaining walls used to improve soil quality, and provide additional shear strength in the soil mass through the tensile strength in the reinforcement layers. A numerical model was developed by finite element code PLAXIS2D, of a segmental facing geogrid-reinforced retaining wall. This research has been carried out to investigate the effect of loading increments, loading increments width, loading increments location, facing inclination angle, geogrid inclination angle, and geogrid-soil friction factor, on the behaviour of a geogrid-reinforced soil retaining wall. The results show that the failure plane occurred in the reinforced zone at the mid-height, this observation contradicted the triangular distribution with depth assumed in conception methodologies for reinforced soil retaining wall. The distribution of peak tensile strength with depth was bilinear at high loading increments and became trapezoidal at low loading ones. Furthermore, it was found that the behaviour of a geogrid-reinforced soil retaining wall is independent of loading increments width beyond 0.5H. It also seems that the loading increments location can change the shape and the position of the peak tensile strength. It also seems that the geogrid inclination angle has a major effect on the lateral facing displacements and safety factor
    corecore